Publications

The lecture introduced IPH – Institut für Integrierte Produktion Hannover gGmbH with its three fields of activity: forming technology, logistics and automation technology. Furthermore, research and consulting projects were discussed. In addition, Industrie 4.0 was presented as a major focus of current research.

industrie 4.0, automation technology, logistics

The lecture introduced IPH – Institut für Integrierte Produktion Hannover gGmbH with its three fields of activity: forming technology, logistics and automation technology. Furthermore, research and consulting projects were discussed. In addition, Industrie 4.0 was presented as a major focus of current research.

industrie 4.0, automation technology, logistics

The lecture introduced IPH – Institut für Integrierte Produktion Hannover gGmbH with its three fields of activity: forming technology, logistics and automation technology. Furthermore, research and consulting projects were discussed. In addition, Industrie 4.0 was presented as a major focus of current research.

industrie 4.0, automation technology, logistics

Path-finding algorithms (PFA) are successfully used to find the optimal path between two locations. Good results are obtained if they are used in scenarios where the entire environment can be described mathematically. Production environments of automated guided vehicles (AGVs) are not one of those. PFA find solutions that are mathematically correct but miss human expertise that would dismiss solutions of the algorithm that aren’t applicable to a real production layout. This paper presents a hybrid algorithm consisting of an A* algorithm, and a fuzzy logic control in order to generate a fuzzy-enhanced A* algorithm (FEA*) that produces efficient and applicable road maps for AGVs. First computational results are shown.

path-finding algorithm, fuzzy-logic, expert system, agv, road maps

The lecture introduced IPH – Institut für Integrierte Produktion Hannover gGmbH with its three fields of activity: forming technology, logistics and automation technology. Furthermore, research and consulting projects were discussed. In addition, Industrie 4.0 was presented as a major focus of current research.

research and development, industrie 4.0, automation technology, logistics

The lecture introduced IPH – Institut für Integrierte Produktion Hannover gGmbH with its three fields of activity: forming technology, logistics and automation technology. Furthermore, research and consulting projects were discussed. In addition, Industrie 4.0 was presented as a major focus of current research.

research and development, industrie 4.0, automation technology, logistics

The most common bulk forming process is closed die forging with flash. One goal of the industry is to reduce flash. For geometrically difficult parts like crankshafts flash reduction can be achieved by flashless preforming and flash-reduced final forging. The corresponding process design is challenging and defects like an insufficient cavity filling often occur in final forging. A controlled, moveable flash gap enables the alteration of the material flow, increasing the filling of the cavity again. In this paper, the flashless preforming for crankshafts and the influence of a controlled flash gap on cavity filling are described.

Forging, die design, material flow, FEA, flash land

In common forging processes for geometrically complicated parts such as crankshafts, an excess on material (flash) is technically needed to produce a good part, which results often in a material utilization between 60 % and 80 %. But the material costs in forging represent up to 50 % of the total production costs. By decreasing the flash ratio, the material usage and production costs in forging operations can be reduced significantly. For a crankshaft, the development of a new forging sequence was necessary, to achieve the reduction of flash. This development was performed for an industrial two-cylinder crankshaft, based on finite element analysis (FEA) simulations. The new forging sequence consists of three flashless preforming operations, an induction reheating followed by a multidirectional forging and the final forging. By use of this forging sequence the flash ratio was reduced from about 54 % to less than 10 %. Due to the huge reduction of the flash ratio, material as well as energy can be saved from now on, thus increasing the competitiveness of the company.

hot forging, FEA simulation, reduction of flash, multidirectional forging, resource efficiency

Compliance with punctual delivery under the high pressure of costs can be implemented in the forge industry through the optimization of the in-house tool supply. Within the Transfer Project 13 of the Special Research Department 489, a mathematical model was developed which determines the minimum inventory of forging tools required for the production, considering the tool appropriation delay.

production planning and -steering, production management, tool inventory reduction, servicelevel, fo

The more complicated a forging geometry is, the more flash is necessary to achieve a form filling and a part free of defects. Most small and medium sized enterprises (SME) forge many different parts in small and medium batch sizes and cannot afford the high effort to design more efficient forging processes. In the paper the development of a resource efficient forging process chain for crankshafts is summarized. The forging sequence consists of flashless preforming steps and a flash reduced final forging. The tools were designed to work on industrially used fast moving mechanical presses. The last of the four flashless preforming steps is a multidirectional forming of the crank webs and a pin offset. To keep the forging forces on a low level and enable a stable forging process, an induction reheating of the preform before multidirectional forging was designed. The crankshaft was successfully forged with a reduced flash ratio of less than 10 %.

forging, flash, induction heating, preform, crankshaft

The lecture introduced IPH – Institut für Integrierte Produktion Hannover gGmbH with its three fields of activity: forming technology, logistics and automation technology. Furthermore, research and consulting projects were discussed. In addition, Industrie 4.0 was presented as a major focus of current research.

industrie 4.0, automation technology, logistics

Increasing electricity price fluctuations through the augmented integration of renewable energies require dynamic tariff plans in order to conform the energy demand on the energy offer for achieving network stability. If time-variable electricity tariffs taking account into the specific needs of small and medium enterprises (SME) can be developed, energy costs can be reduced significantly by freedom degrees of an adapted manufacturing control.

energy costs, electricity tariff, manufacturing control, renewable energy

In this paper an approach for the integration of energy costs in manufacturing control algorithms is presented. The developed method is based on the Load-Oriented Order Release (LOOR) and considers fluctuating electricity prices due to the increasing supply of renewable energy in the power grid. The development allows particularly small and medium-sized enterprises (SME) to save energy costs by organizational methods of manufacturing control without capital-intensive investments.

manufacturing control, energy costs, load-oriented order release, job shop production

The concept of angular difference allows simultaneous measurement of the relative and absolute rotation angle as well as the torque. The torsion of a shaft resulting from torque gets determined via the difference of two angles and converted into correlating torque. Today’s measuring devices use encoder disks or additional torque shafts. An incremental or absolute structure of measurement of the encoder disks is applied to it. Torque shafts are used frequently to extend the twist angle as a result of torsion. Current methods of measurement for rotation angle and torque are described.

concept of angular difference, rotation angle, torque

This paper is concerned to technology trends in logistics and shows a user interface which is focused on voice commands for using it with automated guided vehicles (AGV). Furthermore a multimodal human-machine interaction (HMI) will be presented, which gives the user the possibility to communicate and control an AGV due to information from a speech recognition system and an electroencephalograph (EEG). It will be shown, which potentials based on the merging between the acoustical voice signals and the non-invasive recording of the brainwaves from the EEG-Headset are available. By the detection of the cognitive and emotional state of the user from the signal curves by the EEG like attention or mental effort, an intelligent HMI should be realized. As a result of this, dialogues between humans and machines could be used more efficient and wrong inputs, like for example the request for a reconfirmation if an inattention is detected, could be reduced. First perceptions will be shown in this paper. In conclusion there will be a prospect of upcoming studies in the future.

driverless transport systems, driverless transport vehicles, voice control, eeg

The lecture introduced IPH – Institut für Integrierte Produktion Hannover gGmbH with its three fields of activity: forming technology, logistics and automation technology. Furthermore, research and consulting projects were discussed. In addition, Industrie 4.0 was presented as a major focus of current research.

research and development, industrie 4.0, automation technology, logistics

In the context of industry 4.0 cognitive technical systems are systems that can adapt functionality flexibly and completely personalized to the specific needs of an operator or a product. Due to a wide range of intelligent sensors technical systems have the cognitive ability. In this presentation, examples of cognitive system from the intralogistics are shown.

intralogistics, cognitive system, sensor technology, industry 4.0

Pistons for combustion engines are usually made of aluminum. But increasing requirements on efficiency and performance can be met by use of steel pistons that will probably spread in the automotive industry in the next years. The pistons are forged and an expensive machining process is necessary to finish them. In the usually unidirectional forging process it is not possible to pre-forge some areas, such as the pin bores as they represent an undercut. By the help of a multidirectional forging operation it is possible to forge undercuts. This process is distinguished by a pre-forging of the pin bores and an improved material usage. Furthermore, the following machining operation will be simpler due to an easier positioning of the part. Currently, the forging tools are under development. Once they are finished they will be tested in an industrial environment on an eccentric press. The tools and parts will be analyzed concerning the quality of the parts, the die wear and the economic efficiency of this new process.

piston, steel, forging, pin bore, undercut, multidirectional

Forging companies are often suppliers of the automotive industry, which has, by the implemented principles of Just-In-Time production, particularly high demands on the logistics performance of their suppliers. Moreover, the cost pressure in this industry is very high, so forging companies are striving to minimize their logistics costs. One of the factors influencing these logistics costs is the amount tools in a company’s tool inventory. Since the tooling costs have a high percentage of the product costs, strategic positioning between logistics performance and costs in the forging industry holds great potential. However, while a too low number of tools may cause delays in production and more frequent setting-ups caused by division of production lots and a concomitant increase of setting-up times of up to 30%, a possible consequence of too high tool inventories is the increase of process uncertainty by a prolonged and more stray tool circuit pass-through time. A structured approach to the positioning of the tool supply between logistics performance and costs is presented.

production planning and -steering, production management, tool inventory reduction, servicelevel, fo

In this paper the comparison of simulations of cross wedge rolling processes with real trials using flat cross wedge tools is presented. The investigated materials are titanium and bainitic grade steel. First simulations were used to find the suitable parameter combinations for the investigated materials. Afterwards tools were manufactured with these parameters and additionally with some variations to investigate a field of parameters around this range of parameter values. The purpose of these tests is to find geometrical and process parameters with which a stable cross wedge rolling process for bainitic grade steel and titanium is possible.

cross wedge rolling, bainitic grade steel, titanium, finite element simulations

Your contact person