Publications

In recent years, the requirements for technical components have steadily been increasing. This development is intensified by the desire for products with lower weight, smaller size and extended functionality, but also higher resistance against specific stresses.

The superior aim of the Collaborative Research Centre 1153 "Tailored Forming" is to develop potentials for hybrid solid components on the basis of a new process chain by using joined semi-finished workpieces.

This paper presents the approach and first results of selected subprojects for semi-finished workpiece production by composite extrusion presses, for forming the hybrid semi-finished products by means of cross wedge rolling, die forging and extrusion, and numerical failure prediction of the joining zones. This provides an overview of possible lightweight strategies in the area of bulk forming by the use of pre-joined semi-finished workpieces.

tailored forming, semi-finished workpiece production, forming, cross wedge rolling

This paper proposes a method for the automated generation of roadmaps for AGVs. So far the roadmaps are mostly generated manually, which leads to long and laborious planning phases. The presented method incorporates both mathematical roadmap algorithms as well as human knowledge in the form of a fuzzy inference system. The results of the expert system are evaluated in comparisons to the A* algorithm and to manually generated roadmaps on a real production layout. In both cases the expert system performs better.

fuzzy logic, expert system, AGV, roadmap

The volatility of electricity prices is steadily increasing due to the growing expansion of renewable energies. This is particularly observable at the electricity exchange. Small and medium-sized enterprises (SMEs) in the manufacturing sector can save energy costs due to these fluctuations through targeted load management methods. To increase this potential, SMEs need to use smart meters and obtain their electricity at pricest as close to those at the electricity exchange as possible.

power procurement, electricity exchange, load management, electricity costs

Automated guided vehicle systems (AGVS) have become indispensable in advanced production facilities. Due to significant progress in the field of automated guided vehicles (AGVs) and the increased automation within production plants, the potential applications for AGVs increase. The design of the roadmap for automated guided vehicle systems is a time-consuming process which is currently performed manually for the most part. Because of the AGVs increasing degree of complexity a manual design of the roadmap becomes more and more difficult and challenging. In the course of the research project “Automatic design of the roadmap for automated guided vehicle systems” (IG 18007) a software demonstrator was developed which allows the automated generation of the roadmaps for AGVS. The software demonstrator was applied to real reference scenarios and it was proven that the automatically generated roadmaps are as reliable as the manually generated ones and in some cases even more efficient.

fuzzy logic, expert system, AGV, roadmap

The forecast of sales volumes represents a challenge for the production planning. Above all, sales forecasts that are difficult to predict, such as those caused by promotions, are obstructive. Often, additional information from macroeconomic indexes is not topical, the level of detail of products to be forecast too low and the forecast expenditure too high. Aim of a research project therefore is to develop a model based on search engine data to forecast sales volumes at product level. By the use of complementary application of search engine data to the sales forecast is expected that the forecast mistake can be reduced compared with conventional forecast models upon product level. In general it should be clarified whether and in which extend the logistical efficiency of an enterprise can be improved by search engine data based forecast of sales volumes in the production planning.

production planning, sales forecast, search engine data, forecast model

Researchers at the Institut für Integrierte Produktion Hannover (IPH) have developed a software programme for an objective evaluation of factory layouts. With this tool, you can select your optimum layout numerically instead of following your gut instincts.

factory planning, layout evaluation, optimization procedures

A three step process chain with cross wedge rolling multi-directional forging and final forging would save time and money but leads to high wear at the dies. The cross wedged rolled perform can be described by forming angle and cross section area reduction. Depending on the preform geometry and the offset of the middle axis at the multi-directional forging a different amount of wear at the dies is generated. This paper shows the results of the investigation of the abrasive Archard-wear at the dies at the multi-directional forging. A short contact time, a low forming angle, ahigh cross section area reduction and a low offset of the middle axis all lead to a small depth of abrasive wear at the dies

die wear, multi-directional forging, cross wedge rolling

In production, product-based failure costs can be reduced by focusing the production factor „human“. Therefore, human performance fluctuations during the course of day have to be considered in the production planning and control. This paper presents an approach for quality-orientated flexible job shop scheduling, taking into account human performance fluctuations during the day.

production planning and control, performance curve, quality

For lighter and less consuming car engines the uncercut forging of a steel piston the process has to be designed at first. Therefore the process had been set up in FEA simulations and developed until the final forging sequence was found.

FEA, forging, forge, undercut, multidirectional

Hybrid forging combines forming of bulky and sheet metal elements in one process step. During the forming of the bulky and sheet metal elements a joining operation is initiated by the energy provided by the forging operation. Thereby component areas with high loads can be designed using a bulky element whereas areas with lower loads can be designed using a sheet metal element. In consequence, significant weight reductions as well as energy savings within the forging process are achievable. The paper presents the development of a hybrid forging process, using a control arm as demonstration part. By the aid of Finite Element Analysis computations the interactions between the main process parameters and the target value process quality are being derived. It will be shown that the bulky element’s shape has a major impact on further process parameters and that the temperature is crucial for material bonding.

FEA, hybrid forging, bulge forming, sheet metal forming

So far the generation of roadmaps for automated guided vehicles (AGVs) is mostly performed manually. Mathematical path finding algorithms often return results that are mathematically optimal but not applicable to a real production layout. This paper proposes an expert system as a solution that combines traditional path finding algorithms (in the form of a modified version of the A* and the Bellman-Ford algorithm) with a fuzzy inference system that incorporates the human knowledge of AGV system planners. Results that prove the efficiency of the proposed solution are shown in the end.

roadmaps, automated guided vehicles, path planning, fuzzy logic

IPH employee Benjamin Küster won first prize at the Jungheinrich Excellence Awards for his master's thesis. The aim of his work was to develop a system for gesture recognition that allows driverless transport vehicles to be controlled by hand signals.

Excellence Award, Jungheinrich, gesture recognition

For the first time, the Institut für Integrierte Produktion Hannover has awarded the IPH Future Prize. The award went to Daniel Kampen for his bachelor thesis on evolutionary algorithms. His results help the forging industry to save time and material.

Whether aircraft, ships or construction machines: The assembly of so-called XXL products requires a lot of space. Researchers at IPH are currently developing a method which enables companies to find an ideal layout. By this means, they can save space and increase their productivity.

XXL products, area arrangement

Data glasses or data gloves as a novel human-machine interface allow intelligent networking within the Smart Factory. Due to lack of implementation strategies small and medium-sized enterprises hesitate to integrate these technologies in production and logistics. In this context, the following article describes a maturity-based approach for a systematic and holistic planning and controlling of the implementation of these interactive assistance systems (IAS).

industry 4.0, maturity model, interactive assistance system, data glasses

A low energy demand and a fast processing time are required in each industrial process for the production of crankshafts. Crankshafts have a very complex geometry and are forged with a high percentage of flash compared to other forging parts. Recent research showed the feasibility of a flashless forging of crankshafts. One way to forge a flashless crankshaft within three steps is to use cross wedge rolling, multi-directional forging and final forging.

This paper presents the investigation results of the influence of the forming angle in cross wedge rolling on different parameters at multi-directional forging. First the state of research, the process development and tool design of cross wedge rolling and multidirectional forging are described. Then the parameter study will be presented and the influence of the forming angle ? on flash generation, billet temperatures, forming degree, forming forces and effective strain are shown. Generally, flash generates because a rotation-symmetric billet is forced into an asymmetric movement. The influence of a rising forming angle leads to a higher amount of flash at the bottom of the crankwebs.

multi-directional forging, cross wedge rolling, crankshaft, parameter study, forming angle

In complaint management, 8D reports are used to document the analysis and elimination of errors. However, the quality of these reports is often insufficient and leads to longer processing times and the repetition of errors. The newly developed evaluation system QuSys enables an automated check of 8D reports.

complaints, quality, evaluation system, errors, 8D reports

Assembling large-scale products involves frequent process interruptions why in order to reduce the impact of interruptions, a short-term response is necessary to reduce delivery delays and idle times of resources. An approach to challenge this represents the flexibility of a production system. Regarding the environment of large-scale product assembly, it has to be shown which potentials of flexibility are able to be used in a short-term manner.

assembly, production management, disruption management

To reduce production costs of forged parts, different approaches are possible. Especially for valuable materials like titanium, material costs represent a large part of the production costs. Therefore, reducing the initial material can decrease the total costs significantly. In order to identify the potential for improvements, an existing forging sequence was investigated.

For a titanium hip implant, a new forging sequence was developed. To reduce the initially needed material, cross wedge rolling as a preforming operation and die forging with flash brakes was investigated. The influence of the different stages on the final result was analysed and presented in detail. To increase the prediction accuracy of the newly developed flash-reduced forging sequence and to decrease iteration loops of die designs, feasible simulation parameters considering the boundary conditions of the forging environment were investigated. This is done using Finite Element Analysis (FEA), considering form filling, process stability, die stress and press forces. Using cross wedge rolling and die forging with flash brakes, the newly developed forging sequence reduces the flash rate significantly from 69 % to 32 %.

cross wedge rolling,forging, flash-reduced, finite element simulations, flash brakes

In this article, image processing of a binary single track code for determining torque is presented. The aim of the research is to determine the absolute angular position of a shaft and the applied torque. For capturing an image of the binary code two independent imaging modules are used, both allowing for measuring the angular position and rotational speed. Combining both imaging modules, torque can be determined. Position markings are directly applied on the shaft using a laser to ensure a simple integration of the system into any application. The selected technological approach is based on a contactless measurement method using angle differences. The concept of image processing as well as first research results are presented for determining the angular position twice and, thus, the torque applied to the shaft.

image processing, single track code, torque

Your contact person